SAR in Ice Operations: the NIC and CIS Experience

Cheryl Bertoia

Director, Science and Applied Technology U.S. National Ice Center

Michael Manore

Chief, Strategic Planning Canadian Ice Service

Ice Centers' Mandate

Provide ice information and hazard warnings in support of:

- marine safety
- icebreaking operations
- climate monitoring and science
- numerical weather forecasting

Ice and SAR

- Operational potential demonstrated early
 - Aircraft SAR, SEASAT ('78), SIR-A,B ('81-4)
- SEASAT
- Experience gained with satellite SAR through ERS AO and operational data
- First wide-swath SAR from RADARSAT-1
 - "free" data to USG through US allocation
 - CIS/NIC data exchange
- Data continuity required for future operational use
 - ENVISAT, ALOS, RADARSAT-2, US program (?)

RADARSAT Data Acquisition

Near Real Time Image Acquisitions (avg. per year):

NIC ~ 4000 images CIS ~ 4500 images

Overall ice services usage estimated at 10,000 images/yr

Data Reception and Communications

Order Desk

ISIS, CIDAS

Gatineau

Prince Albert

ASF Quicklook Report 2000 - 2001

■ Images delivered in < 6 hours

Others

■ Images orders delivered > 6 hours

- For January 24, 2000 to January 25, 2001
- Median Delivery
 Time: 2 hours 23 min
- Average Delivery Time: 3 hours 13 min
- Range: 1:01 to 5:00 hours

Sea Ice Products: the Analysis Process

DMSP OLS 2 GB/day

Ice Recon

AVHRR 2 GB/day

PIPS

beer ame/Y 25 MM Resolutions October 24, 1997

DMSP SSM/I

RADARSAT 0.8 GB/day

Ice chart

Beaufort Sea 1992 Beaufort Sea 2000

Great Lakes OPS

Radar tools

Current Situation

Radarsat

Future Situation

Radarsat

Batch tools

Ice classification

Canadian Ice Service

- Unit of the Meteorological Service of Canada
- Ice analysis methods similar to NIC
- Major Client/Partner -Canadian Coast Guard (CCG)
 - Cost-shared program
 - unique services include:
 - aircraft reconnaissance
 - field personnel on CCG vessels

Challenges in Product Distribution

- Near-real-time information requirement
- Wide variety of products and client capabilities
 - e.g., text bulletins, paper charts/fax, digital data
- Limited and/or expensive marine telecom links
- Large data volume for imagery
 - e.g., 1 RADARSAT image = 100+ MB

- Integration with other analysis, navigation tools
 - product formats
 - integration with other data sources (e.g. GPS, ECDIS)

- Exploit most cost-effective option for user
 - e.g., fax, HF-fax, Internet, Email, ftp, cellular, INMARSAT
- Use limited set of common data formats
 - e.g., GIF, ARC/INFO, others
- Data reduction
 - resolution or area of coverage
- Data compression
 - e.g., 15:1 wavelet-based compression for RADARSAT
- Continual assessment of new options
 - Internet vs. dedicated links
 - high-bandwidth satellite TV equipment

Ice-VU Shipboard Display

- Integrated telecom and product display
 - charts
 - aircraft
 - satellite
- Route planning tools
- Links to ship GPS
- Ice information in ECDIS still under development

Observations

- Fully operational use of satellite SAR is proven in both ice services
 - adopted by several international ice services on commercial imagery basis
- Factors of Success
 - high information content for ice monitoring
 - reliable near-real-time image delivery
 - investment in telecom infrastructure
 - investment in training in use of SAR
- Model for other near-real-time applications
 - e.g., Disaster Monitoring, Coastal Surveillance

Challenges

- High-reliance on labor-intensive, visual interpretation
 - absence of automated algorithms has not prevented operational adoption
- Product dissemination
 - limited, expensive marine communications
 - address through data compression, emerging telecom technologies
- Continuity of data
 - multiple satellites desirable for improved temporal coverage, operational redundancy, long-term data continuity

Future Plans

- Ensure affordable access to data from new SARs
 - ENVISAT and ALOS AO projects (NIC, CIS, JPL)
 - operational use of ENVISAT, RADARSAT-2, ALOS
- Increase international cooperation
 - International Ice Charting Working Group (IICWG)
 - data access, training, archives, collaborative R+D
- Continue automated algorithm development
 - NIC and CIS with U. Kansas, JPL, others
- Introduce automated algorithms to the operations floor

